DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma

نویسندگان

  • Sheila Mansouri
  • Sanjay Singh
  • Amir Alamsahebpour
  • Kelly Burrell
  • Mira Li
  • Merve Karabork
  • Can Ekinci
  • Elizabeth Koch
  • Ihsan Solaroglu
  • Jeffery T. Chang
  • Bradly Wouters
  • Kenneth Aldape
  • Gelareh Zadeh
چکیده

The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model

Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...

متن کامل

The Regression of Glioblastoma Multiforme is Time Dependent in Wild-Type Rat Xenograft Model

Introduction: Glioblastoma multiforme (GBM) is an aggressive case of primary brain cancer which remains among the most fatal tumors worldwide. Although, some in vitro and in vivo models have been developed for a better understanding of GBM behavior; a natural model of GBM would improve the efficiency of experimental models to human GBM tumors. We aimed at the present study to examine the surviv...

متن کامل

Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness

BACKGROUND Glioblastoma is an untreatable brain cancer. The tumors contain a population of stem-like cells which are highly invasive and resistant to therapies. These cells are the main reason for the lethality of glioblastoma. Extracellular guidance molecule netrin-1 promotes the invasiveness and survival of various cancer cell types. We have previously found that netrin-1 activates Notch sign...

متن کامل

EMT related lncrnas’ as novel biomarkers in glioblastoma: a review article

Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...

متن کامل

P157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform

Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis.  In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016